Functional Nanomaterials Using Phenolic Chelating Molecules as Colorimetric and Biological Sensors

Dr. Vinod Kumar. V Postdoctoral researcher @ Prof. Hadas Mamane's Water-Tech laboratory

Nanostructured Materials

- Materials which features with at least one of its critical dimensions between 1 nm to 100nm.
- Nanomaterials can be of two types; engineered or nonengineered
- Engineered nanoparticles are intentionally created to meet the specific applications e.g. CNT, Fullerene etc.
- Non-engineered nanoparticles are unintentionally created by nature such as volcanic ash, DNA and protein.

Synthesis of Nanoparticles (Wet Chemical Approach)

Size or shape – modulate optical and catalytic property

TEL AUI

UNIVERSITY

Surface functionality – Cell permeability and interaction with biomolecules

(J. D. Padmos et al. Langmuir, 2015)

Phenolic Functional Molecules

- Redox reagent Plasmonic NPs (Ag and Au) preparation with surface functionality
- Strong interaction/coordination with metal ions
 - Surface functionality Plasmonic Sensor
- Synthetic versatility to modulate the structure Structureproperty studies
- High Water solubility Biological studies and

environmentally benign

Three in one -**Plasmonic nano**sensor

- 1. Multi-functional role in plasmonic nanosensors
 - □ Used as reducing, stabilizing and surface functionalizing agents
 - Surface functionality used for selective sensing of metal cations and anions
 - Role of phenolic chelating molecules structure on selectivity of cations/anions

Phenolic Chelating Molecules

Scheme of AgNPs synthesis with ligand functionality

Distance dependent optical properties

- Decrease in size of Ag, AuNPs produce-colour
- Modulation of shape & change in the distance between NPs effects the electronic coupling and change the colour

Tuning of VP- and ILP-AgNPs metal ions sensing

1. Amino acids based phenolic chelating ligands functionalized AgNPs

I row: Gly-Glycine, Ala-Alanine, Val-Valine, Leu-Leucine II row: Ile-Isoleucine, Phe-Phenylalanine, Trp-Tryptophan, Tyr-Tyrosine

4-Mar-18

Compound		Metal cations sensed	
	VP-AgNPs	Cd ²⁺ , Pb ²⁺	
VP-AgNPs	VP-AgNPs-TSC	Cd ²⁺ , Pb ²⁺	
	VP-AgNPs-PVA	Hg^{2+}	
	VP-AgNPs-EDTA	Cd ²⁺ , Pb ²⁺	
ILP-AgNPs	ILP-AgNPs	Cd ²⁺ , Pb ²⁺	
	ILP-AgNPs-TSC	Cd ²⁺ , Pb ²⁺	
	ILP-AgNPs-PVA	Hg ²⁺	
	ILP-AgNPs-EDTA	Cd ²⁺ , Pb ²⁺ , Hg ²⁺	
AP-AgNPs	AP-AgNPs	Zn ²⁺ , Cd ²⁺ , Pb ²⁺	
	AP-AgNPs-TSC	Zn ²⁺ , Cd ²⁺ , Pb ²⁺	
	AP-AgNPs-PVA	Hg ²⁺	
	AP-AgNPs-EDTA	Cd ²⁺ , Pb ²⁺	
	GP-AgNPs	Pb ²⁺	
GP-AgNPs	GP-AgNPs-TSC	Zn ²⁺ , Cd ²⁺ , Pb ²⁺ , Mn ²⁺ , Cr ³⁺	
	GP-AgNPs-PVA	Hg^{2+}	
	GP-AgNPs-EDTA	Zn ²⁺ , Cd ²⁺ , Pb ²⁺ , Hg ²⁺	
	LP-AgNPs	Cd ²⁺ , Pb ²⁺	
	LP-AgNPs-TSC	Cd ²⁺ , Pb ²⁺	
LP-AgNPs	LP-AgNPs-PVA	Hg ²⁺	
	LP-AgNPs-EDTA	Cd ²⁺ , Pb ²⁺	
TYP-AgNPs	TYP-AgNPs	Hg^{2+}	
	TYP-AgNPs-TSC	Hg ²⁺	
	TYP-AgNPs-PVA	Hg ²⁺	
	TYP-AgNPs-EDTA	Zn ²⁺ , Cd ²⁺ , Pb ²⁺ , Hg ²⁺	

□ Amino acid attached phenolic ligands were chosen due to its redox properties

- Phenolic unit reduces silver ions into AgNPs and also provides stability and surface functionality to the NPs
- Phenolic chelating ligands were known to form strong coordination with metal ions
- Coordination expected to produce smaller aggregates of AgNPs that would show different colour due to distance dependent optical properties

Selectivity!!!

2. Isopropyl amine based phenolic chelating ligands functionalized AgNPs

(V. V. Kumar et al. New J Chem., 2015)

Guest	LOD (µg/ml)	LOQ (µg/ml)	Guest	LOD (ug/ml)	LOQ (ug/ml)
Co ²⁺	85	255	H ₂ PO ⁻ ₄	130	390
Ni^{2+}	65 80	195 240	HPO ²⁻ 4	145	435
Cd ²⁺	210	630	$(COO)^{2-}_{2}$	160	480

Absorbance spectra of IPA-AgNPs for (a) different metal ions (b) anions with inset digital image (c) LOD and LOQ values for detectable metal ions and anions 4-Mar-18 TEL AUIU UNIVERSITY NALY

2018

3. Role of structural flexibility of phenolic chelating ligands for sensing

(V. V. Kumar et al. RSC Adv., 2015)

Guest	LOD (µg/ml)	LOQ (µg/ml)	Guest	LOD (µg/ml)	LOQ (µg/ml)
C0 ²⁺	155	465	H_2PO_4	275	825
Pb ²⁺	160	480	$(COO)^{2-}_{2}$	225	675
Hg ²⁺	120	360	NO ₂	110	330
4-Mar-18					20

OPD-AgNPs- (a) inset of digital image for different anions (b) Absorbance spectra (c) LOD and LOQ value for NO_2^- and (d) Real water samples ISR

4-Mar-18

(V. V. Kumar et al. ACA, 2015)

LOQ

 $(\mu g/ml)$

0.300

✓ Tunable sensitivity and selectivity

Precursor for CQDs -Fluorescence Sensor

- C-dots are composed of carbon-core and surface domains
- CQDs characterized by UV-Visible, Fluorescence, XPS and FE-TEM
- Successfully use for selective sensing and potential bioimaging probes for Zn²⁺, Pb²⁺

(V. V. Kumar et al. New J Chem., 2017)

Role of phenolic structure on CQDs formation

2018

Emission spectra monitored at different excitation wavelengths in the range of 280–480 nm, inset digital images of CQD

(a) HR-TEM of CQD and (b) XPS spectra CQD and (c) Digital images of pH tuned studies with its Fluorescence spectra in acidic and basic studies

Fig. 8 Biological application of CQD-based fluorescence sensing of Zn²⁺ and Pb²⁺ in zebrafish eggs.

New J. Chem., 2017, 41, 15157

Table 1 Different CQD fluorescence sensors reported for metal cations	
Source for CQDs	Metal ions detected
Pomelo peel	Hg ²⁺
Rose-heart radish	Fe ³⁺
Citric acid	Cu ²⁺
Citric acid/urea/cysteine	Hg ²⁺
Citric acid/cysteine	Cu ²⁺
Valine	Hg ²⁺
Poly(ethylenimine) functionalized CQDs	Cu ²⁺
$N-(\beta-Aminoethyl)-\gamma-aminopropyl methyldimethoxysilane$	Cu ²⁺
Jinhua bergamot	Hg^{2+} , Fe^{3+}
L-Glutamic acid	Fe ³⁺
Sweet potato	Fe ³⁺
Colistin	Fe ³⁺
L-Arginine	Cu ²⁺
Glucose, 1,2-ethylenediamine (EDA) and concentrated phosphoric acid (H ₃ PO ₄)	Cr ⁶⁺
Biomass	Cr ⁶⁺
Ocimum sanctum	Pb ²⁺
2-(2-Hydroxybenzylamino)propanoic acid	Zn^{2+}, Pb^{2+}

- Fluorescent CQDs were prepared via a hydrothermal reaction using amino acid based phenolic molecule
- Investigated the role of phenolic structure on CQDs formation
- Demonstrated selective metal ions sensing of (Zn^{2+}, Pb^{2+})

Present Work @ Water Tech Laboratory

- Constructing a UVA/visible-light-driven photocatalytic membrane reactor with improved permeability and low energy consumption
- Develop ceramic/polymer coated membranes and 3D printed membranes by simple spray coating and FDM technologies.

Thank You

